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Abstract 

  

The following exploration utilizes Audacity and TI-Nspire technology to explore the relationship between sound 

waves and trigonometry. In particular, students will learn how the ratio of frequencies in a musical interval 

determines the consonance or dissonance of the interval. 

 
 

1. Introduction 
The National Council of Teachers of Mathematics has stated that students are more likely 

to develop a profound and lasting understanding of mathematics if they make connections to 

different topics, contexts, and their own interests and experiences [2]. When teaching students 

how to graph trigonometric functions, I have found that the following lesson on sound waves 

helps students better appreciate the value and the precision required to graph more complicated 

sine and cosine waves. 

 

2. Background 
This lesson should take place after students have learned how to graph sine and cosine 

waves with varying amplitudes, frequencies, and horizontal and vertical shifts. Students should 

also know that the sine function is defined as y = sin (x), while a sinusoid function is a function 

of the form  

y = a sin (bx + c). 

 

3. Warmup 
 As a warmup, I give students two different tasks to complete without calculators. I ask 

that on the same coordinate grid, one half of the class graph y = sin x and y = sin 2x, while the 

other half graph y = sin 5x and y = sin 7x (see Figure 1). After volunteers explain their work and 

take questions, I ask the class which pair of functions would be easier to graph, and there is 

general agreement that y = sin x and y = sin 2x is an easier problem. Some reasons that they offer 

include the following: (1) the periods for y = sin x and y = sin 2x are familiar numbers (2π and π, 

respectively); (2) the period of y = sin x is a multiple of the period of y = sin 2x; and (3) both y = 

sin x and y = sin 2x complete a cycle at – 2π and 2π. In addition, students often state that the 

ratio of the frequencies for y = sin x and y = sin 2x (2:1) is simpler than the ratio of the 

frequencies for y = sin 5x and y = sin 7x (7:5). While all of these suggestions are useful, this last 

concept is a key bridge to the main ideas in the lesson. 
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y = sin x and y = sin 2x in [– 2π, 2π] 

 

y = sin 5x and y = sin 7x in [– 2π, 2π] 

 
Figure 1. Warmup (these graphs were created with TI-Nspire software) 

 

4. Single Tones 
 In order to be successful in this lesson, students need to understand that a single tone can 

be modeled by a sinusoidal wave. Additionally, students should know that the volume of the tone 

corresponds with the amplitude of the sinusoidal wave, and the pitch of the tone corresponds 

with the frequency of the sinusoidal wave (note: pitch is defined as “the location of a tone in 

relation to others, thus giving it a sense of being high or low” [4]). Teachers can present this 

information, elicit it from students, or use a program like Audacity to help students discover it 

for themselves (Audacity can be downloaded for free at audacity.sourceforge.net/download/). 

Depending on time, teachers may want to use Audacity, because it has the capability to play a 

tone and then graph the corresponding sinusoidal wave. For example, if you use the “generate” 

function in Audacity, you can create a tone with a frequency of 440 Hz on one page, and a tone 

with a frequency of 880 Hz on another. You can then play these tones and show students the 

corresponding graphs, and students will be able to recognize that the tone with a smaller 

frequency has a lower pitch, while the tone with a larger frequency has a higher pitch (see Figure 

2). 

 

Tone with Frequency 

of 440 Hz 

 
Tone with Frequency 

of 880 Hz 

 
Figure 2. Graphs of Tones with Different Frequencies (graphed with Audacity) 

 

In addition, the teacher can play tones with the same frequency, but different amplitudes, and 

students will be able to recognize that the tone with a larger amplitude produces a louder sound, 

while the tone with a smaller amplitude produces a softer sound (see Figure 3). 
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Tone with Amplitude 

of 0.4 

 
Tone with Amplitude 

of 0.8 

 
Figure 3. Graphs of Tones with Different Amplitudes (graphed with Audacity) 

 

Once students discover that a single tone can be modeled by a sinusoidal wave, and further, that 

the amplitude of this wave determines the volume of the tone and the frequency of the wave 

determines the pitch of the tone, then the class can transition from an exploration of single tones 

to an exploration of intervals.  

 

5. Intervals 
 An interval is defined as “the distance between two pitches” [4], but in order to 

demonstrate this concept to students, I either play various intervals on an online keyboard (such 

as http://www.onlinepianist.com/virtual_piano/), or I will ask students to sing the notes (with 

some practice before class) or play the notes on their instruments. We will play a) an octave (A – 

A), b) a minor second (A – B
b
), c) a perfect fifth (A – E), and d) a perfect fourth (A – D), using 

A above middle C as the root. I ask students to discuss the consonance and dissonance of the 

intervals, and students are quick to agree that the minor second is dissonant, while the other three 

are consonant. Then, I ask groups of four to graph each of the intervals on their TI-Nspires (see 

Figure 4), and after playing each interval again, I ask each group to determine which interval 

corresponds with each graph (alternatively, you can distribute the graphs to each student). One 

benefit of asking students to create the graphs themselves is the fact that they have to agree on a 

standard window that allows them to analyze each graph. 

 

1. Discussion 
 Students tend to make the following observations: (1) the pitches in Graph 2 tend to have 

function values with the same sign; (2) since the pitches in Graph 2 have similar frequencies, the 

graphs resemble a translation; and (3) with the exception of x = 0, the pitches in Graph 2 have no 

x-intercepts in common, while the pitches in the other three intervals do. Students with more 

musical training might argue that since Graph 2 has two pitches that have similar frequencies, the 

interval would create the dissonant sound of a minor second. At this point, I confirm that Graph 

2 is the dissonant interval, and I reveal the interval that is associated with each graph, as well as 

the actual frequencies of the pitches (see Table 1). 
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Graph 1 – (Octave) 

 
y = sin 440x and y = sin 880x 

Graph 2 – (Minor Second) 

 
y = sin 440x and y = sin 466.16x 

Graph 3 – (Perfect Fifth) 

 
y = sin 440x and y = sin 659.26x 

Graph 4 – (Perfect Fourth) 

 
y = sin 440x and y = sin 587.33x 

Figure 4. Graphs of the Four Intervals in [– 0.01, 0.05] (created with TI-Nspire software) 

 
Once we match the intervals with the graphs, I ask students to consider the mathematics behind 

consonance and dissonance. Why is it that two pitches with frequencies of 440 Hz and 880 Hz 

sound consonant, while two pitches with frequencies of 440 Hz and 466.16 Hz sound dissonant? 

A student will normally suggest that the pitches in the octave have frequencies in a ratio of 1:2, 

while the pitches in the dissonant minor second do not have a similarly simple ratio. I will then 

ask students to test their theory on the other intervals, and a student will usually remark that the 

perfect fifth would have a simple ratio of 2:3 if the frequency of E was rounded to 660. 

 

 

Table 1. Four Musical Intervals and the Frequency of each Pitch 

Interval Notes Frequency of First 

Pitch (Hz) 

Frequency of Second 

Pitch (Hz) (rounded 

to nearest hundredth) 

Octave A – A 440 880 

Minor Second A – B
b 

440 466.16 

Perfect Fifth A – E 440 659.26 

Perfect Fourth A – D 440 587.33 
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The suggestion to round encourages students to look at the other intervals, and they will 

manipulate the numbers until they discover the 3:4 ratio of the perfect fourth and the 15:16 ratio 

of the minor second. They are amazed to discover that the consonance or dissonance of an 

interval is really just based on simple mathematics: namely, an interval is consonant if the ratio 

of the frequencies of its pitches can be expressed using small, whole numbers (see Table 2). 

 

Table 2. The Ratio of Frequencies for Four Musical Intervals 

Interval Pitches Frequency of First 

Pitch (Hz) 

Frequency of 

Second Pitch (Hz) 

(rounded to 

nearest hundredth) 

Ratio of 

Frequencies 

Octave A – A 440 880 1:2 

Minor Second A – B
b 

440 466.16 ≈ 15:16 

Perfect Fifth A – E 440 659.26 ≈ 2:3 

Perfect Fourth A – D 440 587.33 ≈ 3:4 

 

At this point, if a student hasn’t already done so, I reference the warmup, and ask 

students to explain why we started with that seemingly unrelated problem. Students may 

remember that it was easier to graph waves with a simpler ratio of frequencies, so this may 

convince them that these intervals are not only easier to graph, but they are also easier to process 

aurally, which results in a consonant sound. 

 

2. Follow-up Activities 
1. Look at actual frequencies 

Students can look at actual frequencies of notes, with the goal of determining pitches that 

would create a consonant or dissonant sound (frequencies can be found at 

http://en.wikipedia.org/wiki/Piano_key_frequencies). For example, students will notice that the 

higher pitch in every octave has double the frequency of the lower pitch, while other intervals 

will always have approximate ratios of 2:3 (perfect fifths) or 3:4 (perfect fourths). Students can 

verify their discoveries using virtual keyboards or musical instruments in class. 

 

2. Look at intervals using combined sinusoids 

 A second activity asks students to look again at consonance and dissonance, except this 

time with graphs of combined sinusoids, rather than two distinct waves. These graphs can add 

another layer to student understanding, since students will see that the consonant intervals have a 

fairly regular, repeating graph, while the minor second looks more like a single sine wave with a 

varying amplitude (see Figure 5). 

 

The graphs of the combined sinusoids provide some insight into the phenomenon of beating. 

Beating is defined as a “throbbing that is heard when two notes are slightly out of tune” [4]. 

Students often hear something similar to this throbbing when the minor second is played, as they 

describe it as a single tone that varies in volume (for a more accurate exploration of throbbing, 

students can use electronic resources to listen to notes that are slightly out of tune, or student 

musicians can bend a pitch on their instrument or with their voices). 
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Graph 1 – (Octave) 

 
y = sin 440x + sin 880x 

Graph 2 – (Minor Second) 

 
y = sin 440x + sin 466.16x 

Graph 3 – (Perfect Fifth) 

 
y = sin 440x + sin 659.26x 

Graph 4 – (Perfect Fourth) 

 
y = sin 440x + sin 587.33x 

Figure 5. Intervals Graphed as Combined Sinusoids [– 0.01, 0.05] (created with TI-Nspire) 

 

When looking at the graph of the minor second in Figure 5, students can relate what they hear to 

what they see, since they can visualize the minor second as a single sine wave (tone) with a 

varying amplitude (volume). Students can explore this algebraically by considering the behavior 

of the product side of the sum-to-product formula sin sin 2sin( )cos( )
2 2

a b a b
a b

 
  . 

 

3. Graph sound waves using Audacity 

If students are comfortable using Audacity, they can play different intervals and have the 

computer capture the sound and graph the corresponding waves. These intervals appear on 

Audacity as combined sinusoids, so students would need to be comfortable with the previous 

activity. This activity goes above and beyond, though, because it allows students to direct the 

activity by choosing their own intervals, hypothesizing whether they are consonant or dissonant, 

and then verifying their hypotheses graphically. 
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3. Conclusion 
In conclusion, this article describes a lesson that looks at the relationship between 

trigonometry and sound waves. Throughout their engagement in the lesson, students utilize 

several of the Standards for Mathematical Practice, including modeling with mathematics, using 

appropriate tools strategically, and attending to precision [3]. These connections between 

trigonometry and music might seem like an interesting aside to some students, but for others, 

they represent an invitation to engage with abstract material and relate it to their everyday lives. I 

have found this lesson to be an effective way to not only engage students, but also to help them 

better understand and appreciate frequency and period.  
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